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Abstract

We present simulations of diffusion-limited transport in an initially cold
medium of two different materials subjected to an impulsive radiative load,
using a Newton-Krylov-Schwarz solver. The spatial discretization employs
Galerkin finite elements with linear piecewise continuous basis functions over
simplices in 2D and 3D. Temporal integration is via a solution-adaptive im-
plicit Euler method. The code shows excellent domain-decomposed scalability
on the Teragrid, BlueGene, and System X platforms. Comparing implemen-
tations for this application with flop-intensive residual evaluation, we observe
that an analytical Jacobian gives better performance (in terms of the overall
execution time to solution) than a Jacobian-free approach.

1 Diffusion-limited radiation transport

Under the assumptions of isotropic radiation with no frequency dependence,
transport through a material characterized by spatially varying atomic num-
ber Z and thermal conductivity of κ can be modeled by the following coupled
nonlinear equations, known as flux-limited radiation diffusion [9]:

∂E

∂t
−∇ · (DE∇E) = σa(T 4 − E),

∂T

∂t
−∇ · (DT∇T ) = −σa(T 4 − E) (1)

with

σa =
Z3

T 3
, DE(E, T ) =

1

3σa + |∇E|
|E|

, and DT (T ) = κT
5
2 . (2)

Here, E represents the photon energy density and T is the material tem-
perature. Since the diffusion approximation can allow speeds of propagation
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faster than speed of light, the above formula for diffusivity DE includes Wil-
son’s flux limiter |∇E|/|E| [9], a strongly nonlinear effect. Though simple in
appearance, this is a challenging problem when atomic number varies sharply,
due to the cubic dependence of the source term coefficient on Z.

2 Discretization and algorithmic setting

We employ the Galerkin finite element method using conforming linear P1 el-
ements, triangular for 2D and tetrahedral for 3D [5]. The diffusion coefficients,
DE and DT , are also expanded in the element basis functions.

In this paper, due to space constraints, we present results from backward
Euler time integration only. Comparisons with various higher order time inte-
gration methods, including BDF (discussed for radiation diffusion problems in
[3]) and implicit Runge-Kutta schemes will be published elsewhere. We evolve
the timestep size by limiting the changes in the solution (point by point)
according to [10]:

max
(
|Un+1 − Un|

|Un+1|

)
≤ εt. (3)

We have used εt = 0.75 in all of the computational results in this paper. We
start with a small value of δt (= 10−5) and allow it to evolve with Eqn. (3),
except that the timestep grows by no more than 20% per timestep, and an
occasional “short” step is imposed to archive the solution for visualization
at regularly spaced intervals. The timestep size evolves to about four orders
of magnitude larger than the initial timestep size towards the end of the
computation, after the radiation pulse has passed beyond the high atomic
number zone.

We use the Newton-Krylov-Schwarz (NKS) algorithm [4, 7] to solve the
nonlinear problem arising on every timestep of the discretized form of Eqn. (1).
Several parameters of NKS must be tuned for optimal performance [4]. Our
code is built on PETSc [1]. We use a left-preconditioned inexact Newton
method to solve the nonlinear problem on each timestep. The relative toler-
ance for the nonlinear residual norm reduction in each timestep is 10−8, which
is far below discretization error but within easy reach of Newton’s method.
The linear problems within each Newton step are solved using GMRES with
a maximum of 80 iterations and a maximum subspace size of 30 between
restarts, or a relative reduction of the left-preconditioned residual by three
orders of magnitude. We use a block Jacobi (zero overlap) preconditioner
and map each subdomain to a single processor. Though not algorithmically
scalable for general elliptic problems, this inexpensive limit of Schwarz precon-
ditioning is adequate for transient problems. We use incomplete factorization
(ILU) within each subdomain and allow a single level of fill. This tuning of
the NKS method follows [4], where it was effective in overall runtime for a
CFD code on a variety of message passing architectures.
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3 Results and Discussion

We present 2D and 3D test cases. The computational domain in 2D is the
unit square, with a radiation flux incident on the left boundary. The atomic
number is location dependent:

Z(x, y) =
{

10 for 1
3 ≤ x ≤ 2

3 and 1
3 ≤ y ≤ 2

3 ,
1 elsewhere. (4)

The boundary conditions for the Eqns. (1) are set by imposing a constant
radiation field at x = 0:

n ·DE∇E +
E

2
= 2 at x = 0 and n ·DE∇E +

E

2
= 0 at x = 1,

and n · ∇E = 0 at y = 0 and y = 1,

where n is the outward unit normal to the boundary, as in [8].
Figure 1 plots the material temperature along y = 0.5 and x = 0.5 cuts

for a large range of uniform mesh resolutions, showing asymptotic grid in-
dependence. A sufficiently fine mesh is needed to resolve the sharp features
inside and around the interior domain of high atomic number. Time evolution
of material temperature along the same cuts is presented in Figure 2. The
high-Z region at the center of the interior domain takes longest to heat up.

Fig. 1. Material temperature at y = 0.5 (left) and at x = 0.5 (right) showing mesh
independence for the 2D test example at t = 3.

The temperature contours showing the propagation of the thermal front
from t = 1 to t = 4 are shown in Figure 3 for the 3D case with a tetrahedral
mesh of 237,160 vertices and 1,264,086 elements. This reduces to the 2D case
on z = constant planes, as atomic number depends only on the x and y
coordinates. This permits comparison to the 2D solution, while providing a
fully 3D configuration for demonstrating scaling.
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Fig. 2. Material temperature evolution at y = 0.5 (left) and at x = 0.5 (right) for
the 2D test case with 167,281 vertices and 332,928 elements.

Fig. 3. Evolution of material temperature in time for the 3D test example with
a tetrahedral mesh of 237,160 vertices and 1,264,086 elements. The top left figure
shows the temperature contours at t = 1, the top right at t = 2, the bottom left at
t = 3, and the bottom right at t = 4.
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We discuss performance issues of the time-accurate NKS algorithm on the
Teragrid cluster (SDSC), BlueGene (Argonne), and System X (Virginia Tech).
The Teragrid cluster is made of 1.5 GHz dual Intel Madison processors, each
with 4 MB of L2 cache, and 4 GB of memory per node. The IBM BlueGene
node contains dual 700 MHz processors with 4 MB shared L3 cache and 512
MB of main memory. We do all the computations on BlueGene in the “co-
processor” mode, in which one processor of a node does communication only,
since memory and memory bandwidth are too limited to make effective use
of both processors as floating point engines. System X is a cluster of dual 2.3
GHz PowerPC 970FX (Apple Xserve G5) processors with 0.5 MB L2 cache.
We do not discuss here the per-processor floating point performance, though
it is an important part of performance overall [4]. Though our code scales well,
it will require, as in [4], attention to ordering and blocking issues to achieve a
high percentage of machine peak on cache-based microprocessors.

3.1 Algorithmic Performance

Figure 4 shows the history of timestep size evolution according to Eqn. 3
and the average number of linear iterations per timestep. Overall execution
time is highly sensitive to timestepping strategy for this problem. We are
evaluating higher order (BDF [2] and Implicit Runge Kutta [6]) methods from
standpoints of computational efficiency and robustness. However, scalability
is not highly sensitive to choice of timestepping scheme, so the results of this
study on domain-decomposed preconditioning, which cover a wide range of
degree of diagonal dominance in the implicit operator, are representative. In
the right side plot of Figure 4, the number of linear iteration count rises as
the number of subdomains increases since the block Jacobi preconditioner gets
weaker as diagonal dominance diminishes for larger timesteps.

Fig. 4. Time step size history (left) and the average number of linear iterations per
timestep (right) for the 3D test case of Figure 3.



6 W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith

3.2 Parallel Scalability

We present the execution time and parallel efficiency on up to 256 processors
of Teragrid, BlueGene, and System X in Figure 5. The base case for com-
puting the parallel efficiency is chosen such that the problem fits comfortably
in the available distributed memory. The code shows excellent scaling on the
three machines. The superlinear speedup on the Teragrid cluster is primarily
due to the superior cache performance offsetting the increased communica-
tion time as the problem size per-processor gets smaller. However, this also
shows that we have room for doing more per-processor (memory hierarchy)
performance optimizations that will benefit the base case the most. We are
currently investigating these performance issues.

Fig. 5. Execution time (left) and parallel efficiency (right) on 256 processors of
Teragrid (1.5 GHz Intel Madison dual processors nodes), BlueGene (700 MHz dual
processor nodes), and System X (dual 2.3 GHz PowerPC 970FX processor nodes).

3.3 Analytical vs. Jacobian-free NKS

The diffusion-limited radiation transport equation presents challenging non-
linear behavior. At the same time, it is easy to code the analytical Jacobian
(which is used for the preconditioning matrix, as well). The analytical Jaco-
bian has the advantage of possibly better performance (see Table 1) but re-
quires memory to store the matrix explicitly. Another convenient approach is
to perform the matrix-vector products (as needed for the Krylov solver) with-
out explicitly forming the Jacobian matrix [7]. This has the obvious advantage
of savings in the memory requirements (though the preconditioner matrix may
still need to be stored) but requires extra function evaluations. This will com-
pete well with the analytical Jacobian case only when the execution time for
function evaluation is significantly (perhaps an order of magnitude) less than
the time to compute the analytical Jacobian
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In Table 1, we compare the performance of three choices for the time-
accurate NKS algorithm:

• analytical Jacobian computed to the same order of accuracy as the
function in every nonlinear iteration. The preconditioner matrix is chosen
to be the same as the Jacobian matrix. The computational cost of this
part dominates the execution time: 62% on 256 processors of Teragrid.

• Jacobian-free matrix-vector products performed without explicitly form-
ing the Jacobian matrix. However, this matrix (or a cheap approximation
to it) is often needed for preconditioning purpose in every nonlinear iter-
ation. The dominating cost here is the function evaluation (about 48% in
Table 1)

• lagged Jacobian-free matrix-vector products performed the same way
as in the previous item but preconditioner matrix is built only once per
timestep and reused for all the linear solves with in a timestep. This saves
time spent on the preconditioner evaluation but often requires more linear
and nonlinear iterations (and thus function evaluations) than the previ-
ous choice. One can even freeze the preconditioner evaluation for many
timesteps but it should be done only when the step size is small or when
there is little change from one step to the next.

We observe that the analytical Jacobian does the best among the three
choices in terms of the total wallclock time. The ratio of the cost of one
Jacobian evaluation to that of one function evaluation on 256 processors of
Teragrid is about thirteen while there is sixteenfold increase in the number
of function evaluations for Jacobian-free case (as compared to the analytical
Jacobian case). Therefore, the Jacobian-free approach is not competitive in the
present scenario even if we assume that the time spent on the preconditioner
evaluation is negligible (which may not be the case). However, a short code
development cycle and savings in memory must often be considered while
choosing Jacobian-free versus analytical approaches.

4 Conclusions and future work

The time-accurate NKS algorithm scales well on Teragrid, BlueGene, and
System X platforms. However, the per-processor performance needs mem-
ory hierarchy optimizations. This might make the function evaluation phase
relatively cheaper, which in turn, can make the Jacobian-free approach com-
petitive. Higher order time integration poses more difficult nonlinear systems
by allowing larger timesteps, but they can be more computationally efficient
overall by completing the time marching in fewer steps. Future work will also
address more complex computational geometries with irregularly shaped zones
of different atomic number, as often encountered in practice.
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Table 1. Performance comparison of analytical Jacobian, Jacobian-free, and lagged
Jacobian-free NKS methods. In the lagged case, Jacobian is evaluated only once per
timestep. For the 3D test of Figure 3 on 256 processors of Teragrid.

Number of Analytical Jacobian Free Lagged Jacobian-free

Time Steps 986 986 986
Nonlinear Iter 4,812 4,812 5,778
Linear Iter 92,843 92,842 92,016
Function Eval 6,140 98,982 99,146

Execution Time of Analytical Jacobian Free Lagged Jacobian-free

Function Eval 25 395 396
Jacobian Eval 254 0 0
PC Eval 0 254 52
Total 412 823 601
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